PROPOSED NEW K-9 (600 STUDENTS) CORE SCHOOL

Design Development Short Report

November 12, 2007

Alberta Infrastructure and Transportation
TABLE OF CONTENTS

CONCEPT OPTION IMAGES ... 1
PROJECT PARTICIPANTS .. 2

1.0 CONTEXT AND FRAMEWORK FOR FACILITY DEVELOPMENT 3
2.0 PROJECT GOALS AND OBJECTIVES 3

3.0 CONCEPT DESIGN .. 4
 3.1 Program and Area Summary ... 4
 3.2 Building Design Intent ... 5

4.0 LEED® OVERVIEW .. 7
 4.1 Current Project Standing ... 7

5.0 STRUCTURAL ... 7

6.0 MECHANICAL .. 8

7.0 ELECTRICAL .. 12

APPENDICES .. 16
 Appendix A – Modified Area Analysis
 Appendix B – LEED® Checklist
 Appendix C – Floor Plans
 Appendix D – Sections and Elevations
 Appendix E – ABC 1997 Building Code Review
 Appendix F – Design Ratios
PROJECT PARTICIPANTS

Steering Committee	**Organization**
John Lovell | Alberta Infrastructure and Transportation
John Gibson | Alberta Infrastructure and Transportation
Fred DeMott | Alberta Infrastructure and Transportation
Laurie Douglas | Alberta Infrastructure and Transportation
Avi Habinski | Alberta Infrastructure and Transportation
Stella Shrum | Alberta Infrastructure and Transportation
Jim Patrick | Alberta Infrastructure and Transportation
Bill McCabe, P.Eng. | Alberta Infrastructure and Transportation
Bonnie Dong | Alberta Infrastructure and Transportation
Ann Owchar | Alberta Infrastructure and Transportation
Ken Glowinski | Alberta Infrastructure and Transportation
Bob Gerhardt | Alberta Infrastructure and Transportation
Allan Brennan | Alberta Infrastructure and Transportation
Corrinna Burdek | Alberta Infrastructure and Transportation
Ike Moolla | Alberta Infrastructure and Transportation
Norine Murrell | Alberta Infrastructure and Transportation
Michael Barbarrow | Calgary Roman Catholic Separate School District
Richard Mysliwy | Calgary Roman Catholic Separate School District
Roland Labbe | Edmonton Public School Board
Larry Schwenneker | Edmonton Public School Board
Michael Ediger | Edmonton Public School Board
Stephen Barr | Barr Ryder Architects & Interior Designers
Steven Bushnell | Barr Ryder Architects & Interior Designers
Dino Loutas | Protostatix Engineering Consultants
Brian Rozak | Hemisphere Engineering Inc.
Doug Cargill | Hemisphere Engineering Inc.

Project Team

Prime Consultants | Barr Ryder Architects & Interior Designers
Architectural | Barr Ryder Architects & Interior Designers
Structural Engineering | Protostatix Engineering Consultants
Mechanical Engineering | Hemisphere Engineering Inc.
Electrical Engineering | Hemisphere Engineering Inc.
Energy Modeler | Hemisphere Engineering Inc.
Cost Consultant | Hanscomb Limited
1.0 CONTEXT AND FRAMEWORK FOR FACILITY DEVELOPMENT

The design of a prototype school includes design and programmatic challenges that cannot be known prior to utilization of each individual school. To mitigate as many challenges and attempt to anticipate the many variations and opportunities, we have planned the project with the valued input of the various School Boards and incorporated flexibility into the building design.

In the development of the school:

- Assumptions have been made to ensure the footprint of the school allows for site flexibility.
- Project goals and objectives are outlined and have been the basis of the facility design.
- Program area and permanent core space has been adjusted to accommodate a specific programmatic requirement established by the development team.
- Design ratio targets have been pursued and attained with the current design configuration.
- Learning space accommodation area has been maximized in the permanent core and modular relocatable classrooms.
- The building footprint has been rationalized with a central core orientation area and a simple circulation structure.
- LEED® strategies have been identified and analyzed.
- The building has been designed with the focus of community access and utilization.
- The building has been designed based on the requirements of the Alberta Building Code.
- The school building design has followed:
 - The School Infrastructure Manual (SIM)
 - Design and Construction Standards and Guidelines for School Facilities (Green Book)

2.0 PROJECT GOALS AND OBJECTIVES

The overall planning goal for the standardization of the K-9 elementary/junior high core (600 capacity) school design focused on several key areas:

- Flexible use of space
- Facilities that enhance learning
- Simple and effective structure and systems to ensure “best value” for money
- Safe and accessible environment for learning
- A design that reflects responsible stewardship
- The maximization of community access to community use facilities (i.e. gymnasium)
• Simple incorporation of modular classrooms into core school for flexibility and transition of student population
• Allow provision for expansion and contraction of the school

3.0 CONCEPT DESIGN

3.1 Program and Area Summary

Total target 600 capacity (K-9) elementary/junior high core school area:

• Initial Area

 Space allocation for standard 600 capacity core elementary school 3509 m²
 Modular classrooms (full build out) 16 @ 100 m² 1600 m²

 Total Build Out Gross Area

 5109 m²

• Site

 Based on the typical 4 acre (1.61 ha) site, Barr Ryder Architects & Interior Designers have established the following fundamental site development guidelines that should be implemented into each site.

 1. The orientation of the building should be towards the street.
 - Identifiable presence in the community.
 - Ease of identification and orientation.
 - Clear sight lines and visibility for security.

 2. Student access should be from the main road.
 - Student safety and site security is paramount.

 3. A student drop off area for both cars and buses should be directly off the main road.
 - Student drop off area is to be separate from the parking areas.

 4. Student playground areas should be oriented to the rear of the school.

 5. It was also essential to the development of the site, that the orientation of the facility would enhance the sense that this new building was part of the community, and although a school, the community was welcome.
 - A community plaza concept in front of the school.
 - Accessible facilities within the school.
3.2 Building Design Intent

.1 Site

Early in the school design development process, it was established that the proposed sites for the schools were limited in area. The 600 capacity core school was given approximately a 4 acre generic site in which to be located, and accommodate all of the site development requirements for the school. It became clear early in the design process that the incorporation of a single storey structure into this limited site area would require careful analysis and would be the basis by which the school design would evolve. The final placement of the 600 capacity K-9 elementary/junior high core school on the site was not part of the proposed scope of work.

.2 Building Rationale

The design of this project originated with the evolution of the program requirements and the educational needs for the elementary/junior high school with the full development team as outlined. The underlying concept for the new prototypical core school is that the facility would have a core building that is designed to accommodate the maximum of 600 students based on Alberta Infrastructure and Transportation’s School Infrastructure Manual with 16 classrooms attached to the school being modular relocatable structures.

In the evolution of the proposed building configuration and analysis of the building code, it was established that two firewalls were required to compartmentalize the building into appropriate areas for student safety. Sprinklers were not specified as part of the development program.

.3 Floor Plan Rationale

General

Programmatically, there have been some modifications to the program areas, as outlined in the School Infrastructure Manual. However, the total allowable gross area for the core school has not exceeded 5109 m². A revised detailed area breakdown for the school is included in Appendix A.

The overall school concept establishes a central core which is entered through the main entrance of the school. From the central core, the main public areas are accessible and two core instructional wings radiate. The proposed split wing concept for the school radiating from the core orientation/gathering node reinforces a high degree of visual and secured access throughout the school. The modular relocatable classrooms are added at the ends of the core instructional wings, initially eight per side. The concept for the attachment of the modular classrooms to the core was to use both Type A and Type B units linked at the ends of each wing. The simple configuration of the modular classroom
allows each school to stack portables on wings based on individual school populations and facilitate in an appropriate level of flexibility for future demographic changes, at the same time allowing equal access to the school’s core functions.

Central Orientation/Gathering/Focal Area

Based on fundamental philosophical goals established for this project, the design of the core school is clearly oriented around a central orientation/gathering/focal area. The administration area, gymnasium, ECS suite and library are located off the central gathering orientation space for functional access, security and clarity of orientation within the facility.

Administration

It was established that it was essential that the administration suite be visually and physically accessible as one immediately enters the school. The centrality of the core orientation/gathering node not only establishes a sense of welcome but also reinforces a sense of security and control within the facility, as it is overseen by the administration suite.

Community Access

In the development of a community school, it was determined that the gymnasium needs to be easily accessible from the main entry and reinforced as a major focus for the school and the community.

After hours sports programs and community gatherings were all desired uses for the gymnasium so the central accessibility is critical.

Breakout Areas

In each wing, ancillary breakout areas have been provided. These spaces are true flexible spaces in the facility and offer a range of configurations that can be individually incorporated into each wing similarly or uniquely.

Building Scale and Details

As the school is a Kindergarten to Grade 9 facility, the design team felt it was essential that the new core school present a scale that would be appropriate for the age group and the community. The entry would be at a scale that would be appropriate for this type of public building within the community. The proposed building concept would also allow for increasing the scale of the space as one progressed into the building and into the more public spaces. The circulation node/gathering space being adjacent to the administration and gym would command a larger presence in the building. The gymnasium would aesthetically and functionally be the tallest space in the building.
Light views will also play a significant role in the development of the facility. All teaching and occupied spaces will receive appropriate levels of natural lighting, and all exterior windows would be operable for access to fresh air.

Exterior Elevation Concept

For the design of the core school, it was important that the school reflect a “kid size” scale for elementary and junior high school students.

Colours and materials would be used to break the scale of the school, reflect the neighbourhood scale, conform to any architectural controls and personify a durability and longevity.

Currently, the modular relocatable classrooms have fairly limited finish options, but can be easily painted or refinished appropriately during the construction process. The building design concept would attempt to use colour and manipulate materials to incorporate the modular units, cohesively into the building design.

4.0 LEED® OVERVIEW

At the onset of the project, it was established by Alberta Infrastructure and Transportation that the standard core elementary schools be designed to target sufficient LEED® points so that once a project site is identified, LEED® Silver under LEED® Canada – New Construction, V1, is attainable.

4.1 Current Project Standing

The LEED® scorecard currently indicates a LEED® Silver standing at 38. This assessment reflects only the content incorporated into the Design Development Report and the credits that appear well within reach assuming current initiatives are completed. Items discussed as potentially viable for this project but which cannot be confirmed from information in the Design Development Report are itemized under the “may be or?” column. There are currently nine credits in this column. A full LEED® checklist has been provided in Appendix B.

5.0 STRUCTURAL

All structural elements will be designed to meet the requirements Part 4 of the Alberta Building Code 1997.

Although there has been no geotechnical evaluation for the proposed sites, based on our experience in the Edmonton area, it would appear that concrete footings supporting a continuous foundation wall would be an acceptable foundation system. If concentrations of soluble sulfates are present in the soil, Portland Cement Type 50 will be utilized.
Main Floor

A reinforced slab on grade will be provided for the main floor. The floor will typically consist of 130 mm reinforced concrete slab unless otherwise required by the geotechnical report. The slab will rest on a full compacted 150 mm clean well graded granular base over native clay till soils. Cast-in-place concrete structural supportive floors will be provided for all exterior stoops at doorways and any other areas that may designated as sensitive to movement.

Roof System

The roof structure over the new school will consist of a combination of steel deck supported by steel joist beams and trusses. Exposed steel trusses will be utilized to support the roof over the gymnasium and the atrium.

Wall System

Load bearing masonry walls will be utilized to support the roof and second floor structure. Masonry walls will consist of either 200 mm or 300 mm reinforced concrete block walls.

6.0 MECHANICAL

The scope of the mechanical work for the core space includes heating, ventilation, plumbing, fire protection, control systems sufficient for effective and reliable facility operations. The system design will reflect a prudent blend of life cycle cost considerations including capital costs, utilizing consumption costs and simple straightforward systems that can be understood and operated in an effective manner. Consideration will be given to providing accessibility for maintenance.

Site Service Utilities

New storm and sanitary services are to be provided based on the generic site plans. Lines will be connected to municipal utilities. The site will be subject to local guideline requirements. Storm water ponding may be required in new green spaces adjacent to the new facility for storm water retention or local municipal requirements mandate this need. A new gas service will be provided as required to suit the building loads as well as loads for future modular portable classrooms.

Anticipated service requirements are as follows:

- 100 mm domestic cold water service
- 150 mm sanitary service
- 300 mm storm service
- 1084 kW gas service with line sizes appropriate to the available site connection
Plumbing Systems

All new plumbing systems are to be of the latest design and of the highest degree of water consumption efficiency. The washroom layout and fixture count to be reviewed for code compliance. New lavatories, trim and sinks are proposed along with water conserving faucet sets with the intent of achieving the highest potential LEED® WE credit.

Domestic water piping, sanitary water piping, storm and plumbing vents will be networked throughout the building back to the service connections, to and mechanical plant. Site work is required in terms of service connections, depending upon location and depth of new site service connections.

Domestic hot water for the facility is to be provided by individual high efficiency water heaters installed in the mechanical room. A small domestic hot water recirculation pump will be provided to ensure availability of hot water throughout the facility.

All domestic hot, cold and recirculation piping will be extended to all fixtures. Domestic hot water will be generated for distribution at 54°C.

Reduced pressure backflow preventor assemblies will be provided consistent with the National Plumbing Code Requirements.

A system of sanitary drains and venting will collect sanitary waste and will transfer effluent to the Municipal sewer system. The primary connection point will be a sanitary manhole in the adjacent site prior to termination in the municipal service.

Heating Systems

Heating system for the building will be a combination of perimeter baseboard heating, and/or passive radiant heating panels suspended from the structure. These perimeter elements will be of a two pipe configuration. The perimeter panels will be controlled in concert with air system functions for the building.

The orientation of the heating system will be as follows:

- Two hot water high efficiency heating boilers will be situated in the mechanical room. Two exchangers are provided for the heating system. One of hot water in the radiant panel/perimeter heating loop; and one for the air system glycol heating loop.
- For the respective heating loops, hydronic circulating pumps, expansion tanks and accessories will be installed locally in the mechanical room.
- Network of insulated reversed return hot water supply and return lines running to heating risers and mains will distribute heating water to the facility.
- Radiant panels are zoned on an exposure basis (approx. 30 zones) each zone is controlled by thermostats and valves with individual room control where appropriate.
• Entrance unit heaters are ceiling or wall mounted in vestibules and entryways to allow for offsetting of infiltration at door entrances.

Cooling Systems

Mechanical cooling for the entire school will not be provided. Where needed, cooling for the project will be by way of DX split systems or dedicated cooling only AC units.

Ventilation Systems

The main building ventilation systems consist of an indoor air systems situated in the mechanical room. This system will be designed with the premise of providing displacement ventilation at reduced air change rates, and with higher proportions of outdoor air such that fan energy consumption and duct sizes can be reduced. This system tempers the outdoor air to supply the occupied spaces though duct risers and low level supply grilles. The system is equipped with supply and exhaust fans, isolation dampers, filter bank, glycol heating coil supplied from the heat exchangers. All components will be selected for a life expectancy 30 years based on ASRAE standards. The system will further utilize a heat recovery assembly to optimize on every efficiency.

This distribution system would supply air around the perimeter of each floor to afford the minimum ventilation supplied to the spaces.

The air systems will be utilizing heat recovery systems on the facility exhaust air streams to improve operating efficiency and will serve to preheat the outdoor air for the building.

Air systems will be equipped with space temperature feedback to reset the discharge air temperature. Air delivery to classrooms and offices will be constant volume during occupancy, and reduced volume during non-occupancy as scheduled. Air systems are designed to use 100% outdoor air and will provide free cooling when outdoor conditions permit.

Gymnasium unit will be conventional indoor air system with a mixing section and variable speed supply blower and heat recovery wheel; sized for the minimum air change requirements of the space.

Exhaust Systems

Exhaust system for washrooms in the building consist of a network of exhaust ductwork connected the primary exhaust systems. The exhaust requirement be in compliance with Alberta Building Code. Exhaust systems will also be provided for photocopier areas as well as lunch/kitchenette areas and specific classrooms as dictated by program needs.
Insulation

- **General**

 Piping, equipment and sheet metal work with surface temperatures greater or less than surrounding air temperature will be insulated to control heat transfer and condensation. Insulation shall meet minimum MNEBC requirements.

- **Piping**

 Insulation on piping systems will include:
 - Heating water
 - Glycol systems
 - Domestic hot, cold and recirculation
 - Roof drains and a portion or pipe near roof
 - Plumbing vents near roof

- **Ductwork**

 Insulation on duct systems will include:
 - Outside air ducts/plenum
 - Supply ducts carrying conditioned air
 - Exhaust/relief ducts near louvres
 - Acoustic treatment where required

Humidification Systems

Humidity control will be provided for the core building only. The minimum amount of humidity control to be provided using a gas fired steam injection humidifier in the air systems to maintain a minimum of 15% humidity in the building during the winter months.

Controls

The proposed system of room temperature control is simplistic and affords a reasonable level of temperature control. It is recommended that this system be DDC based, and flexible to function and expandability.

Energy Conservation Measures in Mechanical Systems

Due to the volume of ventilation air that will be exhausted from classrooms, heat recovery will be incorporated into the air system operation.

Minimum 85% efficient boilers will be used.
High efficiency fan and pump motors will be specified. Heating piping and domestic water piping will be insulated. DDC control system will have capacity to allow for future connection of mechanical systems and future building additions.

DDC control of systems will enable exhaust fans and ventilation air units to shut down during unoccupied periods. An unoccupied space temperature setback system will be incorporated to lower room temperatures. On night cycle, the fan systems will be off and room temperatures will be maintained at night setting by the hot water heating system. Controls in the ventilation supply system will allow reset of the mixed air temperatures to minimize the amount of air tempering.

Conclusion

The proposed development of the facility is driven by optimal balance of comfort and efficiency. The intent is to provide a sustainable and environmentally conscious system design for the facility, the following highlights are considered:

- Improvements to plumbing facilities and fixtures to improve water use efficiency and functionality.
- Improvements to heating systems for control and heat distribution management to ensure blanket coverage or exterior zones.
- Addition of mechanical cooling systems in the form of unitary systems where supplemental cooling is required.
- Addition of heat recovery systems to reduce outdoor air heating loads.
- Ventilation systems improvements to ensure low level displacement ventilation air is accurately and unobtrusively delivered to occupied spaces which can be further enhanced by use of operable windows.
- Installation of life safety systems to meet minimum Code requirements.
- Addition on minimal humidification control for the building of occupant comfort.

7.0 ELECTRICAL

The electrical design for the core school shall comply with the current edition of the Alberta Building Code, Canadian Electrical Code and all Provincial and Municipal Codes.

The electrical design shall include features to minimize and control energy consumption consistent with LEED® performance criteria.
Power Service and Distribution

A new 800 amp service will be provided underground from utility company networked to a pad mounted transformer located adjacent to the building. From this transformer, an underground 120/208 Volt, 3 phase, 4 wire, secondary power service will be provided to the electrical distribution centre located in the main electrical room. Branch circuit panels will be located throughout the school to most effectively serve the various areas of the load concentration. Power, data, security, sound and fire alarm will be provided for in the corridor serving the modular classrooms.

Telephone Service and Distribution

Underground telephone service, 100 mm conduit, will be located in the same trench as the power service. This service will terminate in the computer networking room. An additional 100 mm conduit will be provided for Supernet cable. A cable tray system will be provided throughout the school to serve outlets in offices and classrooms. They will extend down the corridor servicing the modular classrooms.

Sound and Intercommunication System

A sound and PA system will be provided for and will consist of administrative handsets in the general office and library. Intercom systems should also double as a telephone system. Handsets will be provided for in each classroom to allow communication to the general office and classroom to classroom. The system will also control classroom change signal and exterior signals.

Voice Mail and Homework Hotline Features

All corridors and instructional areas will have speakers. A self-contained system will be provided for the gymnasium to allow for independent programs to function within the area without having to tie in through the main school system. Exterior speaker horns will be provided around the school perimeter to allow paging to bus loading, drop off and playground areas. These horns will be tied into an independent zone controlling the main system to allow paging only in the school if desired.

Clock System

Timex wireless GPS clocks will be utilized in the classrooms and hallways.

Convenience Receptacles

Duplex receptacles will be provided in all areas of the school to facilitate the needs of the staff, students and maintenance.
Lighting

Lighting will be of the fluorescent type with luminaires equipped with energy efficient ballasts and lamps.

Classrooms, corridors, administration and project centres/gathering area luminaires will be of the direct/indirect louvre type with a 70/30 distribution, cable suspended.

Gymnasium luminaires will be pendant mounted totally enclosed/wire guard complete with six 54 watt T5 high output fluorescent lamps – 2 level switch.

Storage/Mechanical/Electrical Rooms luminaires will be surface pendant mounted strip type complete with wire guards.

Change/washroom luminaires will be recessed, 300 x 1220 mm lensed type.

All luminaires will be controlled by occupancy sensors. Daylight sensors will be incorporated to reduce illumination levels in high ceiling areas, corridors and classrooms taking into account the natural light content.

Night lighting will be provided in corridors on operation of the security system keypad.

The lighting design will be such as to achieve a “lighting power density” of less than 10 watts per square metre.

Exterior Lighting

Site lighting shall be designed to the illumination levels as set forth by the Illuminating Engineering Society of North America. Site lighting luminaires shall be dark sky compliant to limit “sky glow” and shall be situated to prevent “light trespass” to the surrounding area. Exterior luminaires shall be controlled by photocells/time clock and the building management (DDC) system if applicable.

Emergency & Exit Lighting

Emergency and exit lighting shall be located to conform to the requirements of the Alberta Building Code.

Fire Alarm & Smoke Detection

The fire alarm and smoke detection system will be of the addressable type utilizing the latest technologies. Fire alarm devices shall be located to conform to the requirements of the Alberta Building Code.
Security System

An intrusion detection system will be provided within the school. A numerical keypad will be located at the main and staff entrances to the school. Motion sensors of the passive infrared type will be installed in all corridors, instructional space containing computers and in the administration area. The system shall be equipped with provisions for connection to an outside monitoring facility.

Cable Television System

A television distribution system comprised of RG6-FT4 cable will be rerouted on J-hooks through the ceiling to wall jacks located in classrooms, project centres, breakout rooms, conference rooms, staff lounge and gymnasium.

Car Parking Receptacles

Car parking receptacles will be provided in pre-manufactured posts, two cars per circuit to accommodate staff vehicles. Parking receptacles will be controlled by thermostat and time clock, as well as the DDC system.

Modular Classrooms

Provisions will be made to connect power, fire alarm, security, television, sound and intercommunication to each proposed modular from the school proper.

Energy Conservation Features

In an effort to minimize and control energy consumption and provide a sustainable efficient functional system for the facility, which is consistent with LEED® criteria, it is proposed that the following special features be incorporated into the electrical system of the school:

- Energy efficient lamps and ballasts
- Multi-level lighting
- Local lighting and controllability
- DDC control of car park receptacle operation
- Time clock control of exterior parking lot lighting
- Use of fluorescent T8 and T5 technology
- Occupancy sensor control of lighting in all washrooms, daylight control of corridors

Conclusion

The design of the electrical system will target a LEED® Silver certified facility.
Appendices
Appendix A – Modified Area Analysis
PROPOSED NEW 600 STUDENT K-9 SCHOOL

School Capacity

- 600 students

Area based on Concept A:

- 600 Students K-9 Core, Built out gross area – 5109 m²

INSTRUCTIONAL AREA

<table>
<thead>
<tr>
<th>Area Description</th>
<th>Gross Area</th>
<th>Net Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Modular Classrooms @</td>
<td>100 m²</td>
<td>1600 m²</td>
</tr>
<tr>
<td>2 Science Classrooms @</td>
<td>104.5 m²</td>
<td>208.9 m²</td>
</tr>
<tr>
<td>1 Ancillary @</td>
<td>128.6 m²</td>
<td>128.6 m²</td>
</tr>
<tr>
<td>3 Ancillary @</td>
<td>varies</td>
<td>251.8 m²</td>
</tr>
<tr>
<td>2 ECS</td>
<td>84.8 m²</td>
<td>169.6 m²</td>
</tr>
<tr>
<td>1 Gymnasium @</td>
<td>514 m²</td>
<td>514 m²</td>
</tr>
<tr>
<td>1 Gym Storage @</td>
<td>52 m²</td>
<td>52 m²</td>
</tr>
<tr>
<td>1 Library @</td>
<td>227 m²</td>
<td>227 m²</td>
</tr>
<tr>
<td>1 CTS</td>
<td>193 m²</td>
<td>193 m²</td>
</tr>
</tbody>
</table>

Subtotal 3344.9 m²

NON-INSTRUCTIONAL AREAS

Administration and Staff

<table>
<thead>
<tr>
<th>Area Description</th>
<th>Gross Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal</td>
<td>18.5 m²</td>
</tr>
<tr>
<td>Vice Principal</td>
<td>13.9 m²</td>
</tr>
<tr>
<td>Administration Office</td>
<td>31.6 m²</td>
</tr>
<tr>
<td>Council Office</td>
<td>37.7 m²</td>
</tr>
<tr>
<td>General Administration</td>
<td>71 m²</td>
</tr>
<tr>
<td>Conference Room</td>
<td>20 m²</td>
</tr>
<tr>
<td>Staff Room</td>
<td>64 m²</td>
</tr>
<tr>
<td>Men’s</td>
<td>6 m²</td>
</tr>
<tr>
<td>Women’s</td>
<td>6 m²</td>
</tr>
<tr>
<td>Infirmary</td>
<td>13.5 m²</td>
</tr>
<tr>
<td>Kitchen</td>
<td>11.3 m²</td>
</tr>
<tr>
<td>Mechanical</td>
<td>190 m²</td>
</tr>
</tbody>
</table>

Subtotal 483.5 m²
Physical Education &n
Appendix B – LEED® Checklist
LEED CHECKLIST

Project Name: K-9 Core School
Project #: 27339
Date: 31/10/2007

<table>
<thead>
<tr>
<th>Credit Tally</th>
<th>Category</th>
<th>Title</th>
<th>Points Available</th>
<th>Responsible Professionals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sustainable Sites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 1</td>
<td>Erosion & Sedimentation Control</td>
<td>0</td>
<td>Contractor, Arch</td>
<td>Slit fencing, Sediment traps</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 2</td>
<td>Site Selection</td>
<td>1</td>
<td>Owner/Client, Arch</td>
<td>Client responsibility</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 3</td>
<td>Urban Redevelopment</td>
<td>1</td>
<td>Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 4.1</td>
<td>Alternative Transportation: Public Transportation Access</td>
<td>1</td>
<td>Arch</td>
<td>Confirm Public transit access</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 4.2</td>
<td>Alternative Transportation: Bicycle Storage & Changing Rooms</td>
<td>1</td>
<td>Arch</td>
<td>22 bike stalls and 1 shower room</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 4.3</td>
<td>Alternative Transportation: Hybrid & Alternative Fuel Vehicles</td>
<td>1</td>
<td>Arch, Owner/Client</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 4.4</td>
<td>Alternative Transportation: Parking Capacity</td>
<td>1</td>
<td>Arch</td>
<td>Provide Parking Stalls</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 5.1</td>
<td>Reduced Site Disturbance: Protect or Restore Open Space</td>
<td>1</td>
<td>Contractor, Arch</td>
<td>Arch to provide regrets to Contractor</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 5.2</td>
<td>Reduced Site Disturbance: Development Footprint</td>
<td>1</td>
<td>Arch, Contractor</td>
<td>Arch to provide regrets to Contractor</td>
</tr>
<tr>
<td>Y</td>
<td>Credit 5.3</td>
<td>Stormwater Management: Rate and Quantity</td>
<td>1</td>
<td>Mech, Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 5.4</td>
<td>Stormwater Management: Treatment</td>
<td>1</td>
<td>Mech, Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 7.1</td>
<td>Landscape & Exterior Design - Non-Road</td>
<td>1</td>
<td>Land, Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 7.2</td>
<td>Landscape & Exterior Design - Road</td>
<td>1</td>
<td>Land, Arch, Energy star Roof</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 9.1</td>
<td>Light Pollution Reduction</td>
<td>1</td>
<td>Elec, Arch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible Points</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Tally</th>
<th>Category</th>
<th>Title</th>
<th>Points Available</th>
<th>Responsible Professionals</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 1.1</td>
<td>Water Efficient Landscaping: Reduce by 50%</td>
<td>1</td>
<td>Land, Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 1.2</td>
<td>Water Efficient Landscaping: No Prioritize Use or No Irrigation</td>
<td>1</td>
<td>Land, Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 2</td>
<td>Innovative Wastewater Technologies</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 3.1</td>
<td>Water Use Reduction: 10% Reduction</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Credit 3.2</td>
<td>Water Use Reduction: 15% Reduction</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Possible Points</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Tally</td>
<td>Category</td>
<td>Title</td>
<td>Points Available</td>
<td>Responsible Professionals</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>--</td>
<td>------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Energy & Atmosphere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Fundamental Building Systems Commissioning</td>
<td>0</td>
<td>Comm Mech/Arch</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Minimum Energy Performance</td>
<td>0</td>
<td>Mech Elec</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>CFC Reduction in HVAC&R Equipment</td>
<td>0</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>Optimize Energy Performance</td>
<td></td>
<td>Mech, Elec Arch</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Renewable Energy 5%</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Renewable Energy 10%</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Renewable Energy 20%</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Additional Commissioning</td>
<td>1</td>
<td>Comm</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Ozone Depletion</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Measurement & Verification</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Green Power</td>
<td>1</td>
<td>Client</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Subtotal</td>
<td>10</td>
<td>Client Action</td>
<td></td>
</tr>
</tbody>
</table>

Possible Points: 17

<table>
<thead>
<tr>
<th>Credit Tally</th>
<th>Category</th>
<th>Title</th>
<th>Points Available</th>
<th>Responsible Professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>N</td>
<td>Materials & Resources</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Y</td>
<td>Storage & Collection of Recyclables</td>
<td>0</td>
<td>Contractor Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Building Reuse, Maintain 70% of Existing Shell</td>
<td>1</td>
<td>Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Building Reuse, Maintain 100% of Existing Shell</td>
<td>1</td>
<td>Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Building Reuse, Maintain 100% Shell & 50% Non-Shell</td>
<td>1</td>
<td>Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Construction Waste Management Direct 50%</td>
<td>1</td>
<td>Contractor Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Construction Waste Management Direct 75%</td>
<td>1</td>
<td>Contractor Arch</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Resource Reuse, Specify 5%</td>
<td>1</td>
<td>Contractor</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Resource Reuse, Specify 16%</td>
<td>1</td>
<td>Contractor</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Recycled Content, Specify 25%</td>
<td>1</td>
<td>Product Specification</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Recycled Content, Specify 50%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Local/Regional Materials, 10% Manufactured Locally</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Local/Regional Materials, 20% Above, 50% Harvested Locally</td>
<td>1</td>
<td>All</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Rapidly Renewable Materials</td>
<td>1</td>
<td>Architect</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Certified Wood</td>
<td>1</td>
<td>Architect</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Durable building</td>
<td>1</td>
<td>Architect research CBA 5473-95(R2001)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Subtotal</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Possible Points: 14
Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Credit Title</th>
<th>Category</th>
<th>Title</th>
<th>Points Available</th>
<th>Responsible Professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y ? N</td>
<td>Indoor Environmental Quality</td>
<td>Minimum IAQ Performance</td>
<td>0</td>
<td>Mech</td>
</tr>
<tr>
<td>Y</td>
<td>Environmental Tobacco Smoke (ETS) Control</td>
<td>0</td>
<td>Contractor Owner By Arch/Owner</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Carbon Dioxide (CO₂) Monitoring</td>
<td>1</td>
<td>Mech</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Increase Ventilation Effectiveness</td>
<td>1</td>
<td>Mech Arch</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Construction IAQ Management Plan During Construction</td>
<td>1</td>
<td>Contractor Mech Contractor - outline in spec.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Construction IAQ Management Plan Before Occupancy</td>
<td>1</td>
<td>Contractor Mech Contractor - outline in spec.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>1</td>
<td>Arch specifications</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Low-Emitting Materials, Paints</td>
<td>1</td>
<td>Arch specifications</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Low-Emitting Materials, Carpet</td>
<td>1</td>
<td>Arch specifications</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Low-Emitting Materials, Composite Wood</td>
<td>1</td>
<td>Arch specifications</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>1</td>
<td>Mech Arch Foot Grittes, Full height walls, P. coper?</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Controllability of Systems: Perimeter</td>
<td>1</td>
<td>Arch Elec research window locs, light controls</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Controllability of Systems: Non Perimeter</td>
<td>1</td>
<td>Mech Arch research window locs, light controls</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Thermal Comfort, Comply with ASHRAE 55-1992</td>
<td>1</td>
<td>Mech Heating, cooling, vent, and humidification monitored and maintained at set levels.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Thermal Comfort, Permanent Monitoring System, DOG</td>
<td>1</td>
<td>Mech DDG system will provide monitoring and system control capability</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Daylight & Views: Daylight 75% of Spaces</td>
<td>1</td>
<td>Arch Elec research window locs, light controls</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Daylight & Views: Views for 90% of Spaces/regularly occupied</td>
<td>1</td>
<td>Arch Elec research window locs, light controls</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>6</td>
<td>Subtotal Possible Points 15</td>
<td></td>
</tr>
</tbody>
</table>

Innovation & Design Process

<table>
<thead>
<tr>
<th>Credit Title</th>
<th>Category</th>
<th>Title</th>
<th>Points Available</th>
<th>Responsible Professionals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y ? N</td>
<td>Innovation & Design Process</td>
<td>Innovation in Design (Owner Products Housekeeping)</td>
<td>1</td>
<td>Client Open for discussion</td>
</tr>
<tr>
<td>1</td>
<td>Innovation in Design (Education)</td>
<td>1</td>
<td>Arch Open for discussion</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Innovation in Design (Water Performance: Custom connection)</td>
<td>1</td>
<td>Mech Open for discussion</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Innovation in Design (6) Construction Waste Management</td>
<td>1</td>
<td>Contractor Open for discussion</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>LEED Accredited Professional</td>
<td>1</td>
<td>Arch ACHIEVED</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>Subtotal Possible Points 5</td>
<td></td>
</tr>
</tbody>
</table>

Total Project Score

<table>
<thead>
<tr>
<th>Score</th>
<th>Total Points</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>23</td>
<td>Certified 20 to 22 points</td>
</tr>
<tr>
<td>31/10/2007</td>
<td>3/3</td>
<td>Silver 33 to 39 points</td>
</tr>
</tbody>
</table>
Appendix D – Sections and Elevations
Appendix E – ABC 1997 Building Code Review
APPENDIX E – ABC 1997 BUILDING CODE REVIEW

A. ASSEMBLY OCCUPANCY

1) Group A, Division 2, Assembly Occupancy (3.2.2.25)
 a) not sprinklered throughout;
 b) not more than three (3) storeys in height [one (1) storey].
 c) Facing 3 streets.
 d) It has a building area not more than:

 i) 2400 m² [one (1) storey];
 ii) 1000 m² [two (2) storeys];
 iii) 500 m² [three (3) storeys].

2) The building referred to in Sentence (1) is permitted to be of combustible construction or non-combustible construction used singly or in combination, and
 a) floor assemblies shall be fire separations and, if of combustible construction, shall have a fire-resistance rating not less than 45 minutes;
 b) mezzanines shall have, if of combustible construction, a fire-resistance rating not less than 45 minutes;
 c) roof assemblies shall have, if of combustible construction, a fire-resistance rating not less than 45 minutes, except that in a building not more than one (1) storey in building height, the fire-resistance rating is permitted to be waived provided the roof assembly is constructed as a fire-retardant treated wood roof system conforming to Article 3.1.14.1., and the building area is not more than:

 i) 800 m² if facing one (1) street;
 ii) 1000 m² if facing two (2) streets, or;
 iii) 1200 m² if facing three (3) streets, and;

 d) Loadbearing walls, columns and arches supporting an assembly required to have a fire-resistance rating shall:

 i) have a fire resistance rating not less than 45 minutes or;
 ii) be of noncombustible construction.
Appendix F – Design Ratios
Project Identification

| Project Name: | Standard Core Elementary School
600 Capacity |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Base Case – Edmonton</td>
</tr>
<tr>
<td>School Board:</td>
<td>N/A</td>
</tr>
<tr>
<td>Architect:</td>
<td>BARR RYDER ARCHITECTS</td>
</tr>
<tr>
<td>Constructor:</td>
<td></td>
</tr>
<tr>
<td>Building Type:</td>
<td>School</td>
</tr>
<tr>
<td>Project Start Date:</td>
<td>N/A</td>
</tr>
<tr>
<td>Completion Date:</td>
<td>N/A</td>
</tr>
<tr>
<td>Market Condition:</td>
<td>April 2007 Constant $</td>
</tr>
<tr>
<td>Geographic Location Factor:</td>
<td>Edmonton Base Rate</td>
</tr>
</tbody>
</table>

Description of Building

1 Storey w/ Mech. Mez.: Drilled Conc Piles, Grade Beams dependant on Soil conditions. Loadbearing Blk, Ext wall Cladding 3.0 m Ht Masonry Facing, Upper Walls EIFS, Alum Frame Punch Windows, Alum. Curtain Wall at Entry, Modified SBS 2-ply Flat Roof, Int Partitions Conc Blk Most Areas & GB/SS Admin. Floors VCT Most Areas/ Carpet Library, Admin/Wood @ Gym, Ceramic Tile Washrooms, Ceilings Acoustic Tile/GB, Walls Pt/Ceramic Tile Washrooms, Millwork, Mech-Heat wt Perimeter Radiant Ceiling Panels c/w Gas Fired Finned-Tube Hot Water Boilers

Building Area and Volume

<table>
<thead>
<tr>
<th></th>
<th>Core</th>
<th>Built-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Floor Area:</td>
<td>3509 m²</td>
<td>5109 m²</td>
</tr>
<tr>
<td>Net Floor Area:</td>
<td>3228 m²</td>
<td>4721 m²</td>
</tr>
<tr>
<td>Volume:</td>
<td>17370 m³</td>
<td>24250 m³</td>
</tr>
<tr>
<td>Exterior Cladding:</td>
<td>2320 m²</td>
<td>2767 m²</td>
</tr>
<tr>
<td>Roof Area:</td>
<td>3380 m²</td>
<td>4980 m²</td>
</tr>
<tr>
<td>No. of stories above grade:</td>
<td>1 no.</td>
<td>1 no.</td>
</tr>
<tr>
<td>Modular Classrooms Built Out:</td>
<td>N/A</td>
<td>16 no.</td>
</tr>
</tbody>
</table>

Outline Specification

A10 Foundation:
Piles with grade beams and pile caps for isolated columns, 125 slab on grade based on soils condition in area

B10 Superstructure:
Load bearing concrete block, steel beam interior structure, concrete second floor system.

B20 Exterior Enclosure:
Wall Cladding is 3.0 m of masonry facing, Upper walls EIFS system, metal siding finish, Aluminum frame punched windows, Curtain Wall At Entry, Modified SBS flat roofing system.

B30 Roofing: SBS 2 Ply

C10 Interior Construction:
Concrete block partitions most areas, drywall partitions at Admin. Area.

C30 Interior Finishes:
Vinyl composite tile flooring to most areas, ceramic tile washrooms, carpet flooring to Library, admin and staff lounge, wood floor in gym, ceilings area a combination of painted drywall and acoustic tile, wall finish are predominantly paint, ceramic wall tiles at showers, urinals and mop sink.

D20 Plumbing:

D30 HVAC, Fire Protection:
System utilizes interior air handling units and boilers, perimeter radiation utilized for heating, air conditioning– excluded, building sprinklered, mechanical system controlled using digital controls.

Ratios

<table>
<thead>
<tr>
<th></th>
<th>Core</th>
<th>Built-out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Floor Area/GFA:</td>
<td>.92:1</td>
<td>.92:1</td>
</tr>
<tr>
<td>Exterior Cladding Area/GFA:</td>
<td>.66:1</td>
<td>.54:1</td>
</tr>
<tr>
<td>Window Area/GFA:</td>
<td>.05:1</td>
<td>.08:1</td>
</tr>
<tr>
<td>Roof Area/GFA:</td>
<td>.96:1</td>
<td>.97:1</td>
</tr>
</tbody>
</table>

Capacities

- Percentage exterior wall glazed: 16 %
- Soil characteristics:
- Density plumbing fixtures:
- Heating capacities:
- Cooling capacities:
- Ventilation Capacities:
- Lighting intensity:

Floor Area (by type)

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Core</th>
<th>Built-out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ancillary Classrooms/CTS</td>
<td>573.3 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Permanent Core Classrooms</td>
<td>438.5 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Gymnasium</td>
<td>627.5 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td>227 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Administration/Staff</td>
<td>293.5 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Storage</td>
<td>65.6 m²</td>
<td>n/a m²</td>
</tr>
<tr>
<td></td>
<td>Mech/Elect/Maintenance</td>
<td>249.7 m²</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td>Circulation</td>
<td>583.4 m²</td>
<td>m²</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>169.5 m²</td>
<td>m²</td>
</tr>
</tbody>
</table>
Project Identification

<table>
<thead>
<tr>
<th>D50 Electrical: Main Service size of 800 amps at 120/208 volts, Data, Voice and TV systems included using conduit & cable trays, security system included, public address system included, connections to allow for future portables.</th>
<th>Modular Classrooms Built out</th>
<th>N/A</th>
<th>1600 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost of Permanent Core per m² (April 2007$)</td>
<td>Gross Floor Area</td>
<td>3509m²</td>
<td>5109 m²</td>
</tr>
</tbody>
</table>